141 research outputs found

    The Angelina Jolie effect : how high celebrity profile can have a major impact on provision of cancer related services

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements We acknowledge the support of the Genesis Breast Cancer Prevention Appeal and Breast Cancer Campaign, which funds the FH02 study. DGE is a NIHR Senior investigator. FH02 Study Group, Family History Clinics providing data is as follows, Edinburgh: Lynda Luke, Lesley Smart; St Barts, London: Vian Salih, Ilyena Froud; Grantham: Nicky Turner, Natarajan Vaithilingam; Leighton Hospital Crewe: Tracey Hales, Samantha Bennion; LondonDerry: Celia Diver-Hall, Jackie McGee; Nottingham: Douglas MacMillan; Nicky Scott; Bath: Diana Dalgleish, Alison Smith; Coventry: Celia Lewis; Royal Marsden Hospital, London: Janet self, Gerald Gui; Derby: Mark Sibbering, Samantha Crockett; City Hospital, Birmingham: Simerjit Rai, Harriet Goddard; Genesis Prevention Centre, Manchester: Lorraine Roberts, Jayne Beesley. RGC teams are as follows, Nottingham RGC: Gareth Cross; Guys Hospital: Adam Shaw; Manchester RGC: Andrew Wallace.Peer reviewedPublisher PD

    Land cover change and carbon emissions over 100 years in an African biodiversity hotspot

    Get PDF
    Agricultural expansion has resulted in both land use and land cover change (LULCC) across the tropics. However, the spatial and temporal patterns of such change and their resulting impacts are poorly understood, particularly for the pre-satellite era. Here we quantify the LULCC history across the 33.9 million ha watershed of Tanzania's Eastern Arc Mountains, using geo-referenced and digitised historical land cover maps (dated 1908, 1923, 1949 and 2000). Our time series from this biodiversity hotspot shows that forest and savanna area both declined, by 74% (2.8 million ha) and 10% (2.9 million ha), respectively, between 1908 and 2000. This vegetation was replaced by a five-fold increase in cropland, from 1.2 million ha to 6.7 million ha. This LULCC implies a committed release of 0.9 Pg C (95% CI: 0.4-1.5) across the watershed for the same period, equivalent to 0.3 Mg C ha(-1) yr(-1) . This is at least three-fold higher than previous estimates from global models for the same study area. We then used the LULCC data from before and after protected area creation, as well as from areas where no protection was established, to analyse the effectiveness of legal protection on land cover change despite the underlying spatial variation in protected areas. We found that, between 1949 and 2000, forest expanded within legally protected areas, resulting in carbon uptake of 4.8 (3.8-5.7) Mg C ha(-1) , compared to a committed loss of 11.9 (7.2-16.6) Mg C ha(-1) within areas lacking such protection. Furthermore, for nine protected areas where LULCC data is available prior to and following establishment, we show that protection reduces deforestation rates by 150% relative to unprotected portions of the watershed. Our results highlight that considerable LULCC occurred prior to the satellite era, thus other data sources are required to better understand long-term land cover trends in the tropics. This article is protected by copyright. All rights reserved

    The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    Get PDF
    The Palomar Transient Factory (PTF) Orion project is an experiment within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide field of view available using the PTF camera at the Palomar 48" telescope, 40 nights were dedicated in December 2009-January 2010 to perform continuous high-cadence differential photometry on a single field containing the young (7-10Myr) 25 Ori association. The primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper we describe the survey and data reduction pipeline, and present initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which we are candidate 25 Ori- or Orion OB1a-association members. Of these, 2 are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include 6 of the candidate young systems. 45 of the binary systems are close (mainly contact) systems; one shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 \pm 0.0000071d, with flat-bottomed primary eclipses, and a derived distance consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).Comment: 66 pages, 27 figures, accepted to Astronomical Journal. Minor typographical corrections and update to author affiliation

    The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    Get PDF
    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to Ap

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Comparing different models of the development of verb inflection in early child Spanish

    Get PDF
    How children acquire knowledge of verb inflection is a long-standing question in language acquisition research. In the present study, we test the predictions of some current constructivist and generativist accounts of the development of verb inflection by focusing on data from two Spanish-speaking children between the ages of 2;0 and 2;6. The constructivist claim that children's early knowledge of verb inflection is only partially productive is tested by comparing the average number of different inflections per verb in matched samples of child and adult speech. The generativist claim that children's early use of verb inflection is essentially error-free is tested by investigating the rate at which the children made subjectverb agreement errors in different parts of the present tense paradigm. Our results show: 1) that, although even adults ' use of verb inflection in Spanish tends to look somewhat lexically restricted, both children's use of verb inflection was significantly less flexible than that of their caregivers, and 2) that, although the rate at which the two children produced subjectverb agreement errors in their speech was very low, this overall error rate hid a consistent pattern of error in which error rates were substantially higher in low frequency than in high frequency contexts, and substantially higher for low frequency than for high frequency verbs. These results undermine the claim that children's use of verb inflection is fully productive from the earliest observable stages, and are consistent with the constructivist claim that knowledge of verb inflection develops only gradually

    The Lantern, 2017-2018

    Get PDF
    On Dissociation • Untouchable • After Rocket Man • The Science Fair • Cardinal Rule at Stephen J. Memorial • Quentin & Sylvie • Cabello • The Get Out • Painting Day • Black, White and Grey • Family Pruning • How to Remove a Stain • Becoming Ourselves • Wonderbread U • Overture • Pescadero • Gross • Stage Fright • Lucky Daddy • Sarah • Rumble • Silvermine • The Green Iguana • A Poem for Ghost Children • A Poem for Lost Boys • Mother • Drop of Grease • Don\u27t Wanna be White • I • Amelia Earhart Disappeared Into My Vagina: An Ode to Cunts, Menstrual Cups and All Things Woman • Suburban Summer • Nightmares and Dreams Induced by My Mother • Teacups, Skins, etc. • Three Thoughts About My Bedroom • Dear Siri • 2 Queens (Beyonce in Reference to Sonia Sanchez) • Voyeurs • In Front of the Bathroom Mirror • To a Rose • Howl • Mice • Mirror • Language Accordion Volcano Mouth • Lucky Woman • Butterscotch • To Persephone • Wolf • Notes Never Passed • Topple • Bust • Kyoto • Identity • Sunflower • Tornabuoni Bubbles • Olympia • Decayed Hall • Perspectivehttps://digitalcommons.ursinus.edu/lantern/1186/thumbnail.jp

    Correction to: Quantifying and understanding carbon storage and sequestration within the Eastern Arc Mountains of Tanzania, a tropical biodiversity hotspot

    Get PDF
    Abstract Upon publication of the original article [1], the authors noticed that the figure labelling for Fig. 4 in the online version was processed wrong. The top left panel should be panel a, with the panels to its right being b and c. d and e should be the panels on the lower row, and f is correct. The graphs themselves are all correct. It is simply the letter labels that are wrong
    corecore